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ABSTRACT

; Using the velocity components derived by Bickley from a physical formulation due
to Schlichting, the thermal distribution in a plane incompressible laminar jet is determined
by reducing the energy equation to an ordinary differential equation by a similarity trans-

| formation. The reduced equation is solved in terms of associated Legendre functions for

all Prandtl numbers, and solutions are derived for particular Prandil numbers by elemen-

tary methods. Some numerical results are presented.

NOMENCLATURE

X and §
T (%,¥) and ¥ (%,¥)
r(x,y)
T &3 =T (X,¥)-T( »,¥)

P

i

M
a® = pM/p?
x=a’Xandy=¢"y
u=piu/l@®y) and v = p¥/(ah)
6=cp®>T/(a®p°)

o=pe/k

B = (485 "/® = 0.2751606040

é:: y/’(2/3
W x,y)
n =tanh (&)

F (&) and G (&)
P#(n) and Qﬂ‘ ()

rectangular Cartesian coordinates [l]
corresponding velocity components [1/t]
temperature [°]

excess temperature [°]

pressure [m/lt’]

constant density [m/ 1°]

thermal conductivity [ml/%°]

specific heat [1°/%%]

coefficient of absolute viscosity [m/It]
momentum flux per unit length [m/1%]

the reciprocal of a characteristic length [17 Y
dimensionless coordinates [0]
corresponding dimensionless velocities [0]
dimensionless excess temperature [0]
Prandtl number (0]

a numerical constant [0]

similarity parameter [0]

dimensionless stream function [0]
transformed similarity parameter [0]

dimensionless auxiliary functions [0]

associated Lengendre function of order p and degree v

of the first and second kind respectively [0]
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INTRODUCTION

The theory of a plane incompressible laminar jet, i.e., the pressurized slow flow
of a liquid through a linear slit in a wall into the same liquid, can be treated by boundary
layer theory provided that one idealizes the poblem in the obvious way. The hydrodyna-
mic aspeects of the problem were first formulated by Schlichting [1] who showed that the
analytical treatment could be reduced by a similarity transformation to the solution of an
ordinary differential equation with prescribed two point boundary conditions. Subsequent-
ly, a closed form solution to the differential system was obtained by Bickley [2]. Ex-
cellent reviews [3] of the analysis are readily available.

Yih (4] has incorrectly treated the associated heat transfer problem by requiring
the viscous dissipation to vanish identically. This requirement was used to derive a simi-
larity transformation in a precise analogy with Schlichting’s treatment of the hydrodynamic
problem where the momentum {lux across any plane normal to the jet is constant. Subse-
quently, Yih was able to obtain a closed form solution to the truncated energy equation
using his improperly obtained transformation. Needless to say, the whole procedure used
by Yih is highly suspeet, for there is a decided difference between neglecting the dis-
sipation term in the energy equation after one has derived the correct similarity trans-
formation and deriving an incorreetl similarity transformation from the artificial requirement
that the energy flux per unit depth of the slit be constant for each normal plane (i.e., the
dissipation vanishes identically).

In view of the continuing interest in the plane jet, it appears worthwhile to present
an exact treatment for the thermodynamic situation within the framework of boundary
layer theory. It is interesting to note that the exact treatment is completely different
from the incorrect theory due to Yih.

L. FORMULATION OF THE PROBLEM

A mathematical description of the pertinent phenomena will be aided by reference
to Fig. 1, a schematic diagram of a plane laminar jet.

The differential equations that describe the flow are the continuity equation, the
momentum equation with the boundary layer approximation and the energy equation in its
boundary layer form; these three equations are

d

I%

d .
+ — =0 (1.1)
y

=l
<l

(o B
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dr _ou dp o
F— 47— =m— — (1.2)
p(“ 0i+v6§) ix ¥ e

oT aT> (azr da\?
pc T + v = k )i—# (— (1.3)
( 0% 0y 0y 3 ay.

The boundary conditions are

and

ou aT
T (X f =) =0, ¥X,0) =0, — =0, T (o,) =0 and(— =0 (1.4)
) ay /_ o /_
y=0 y=0

In addition there are two other important considerations: the pressure field is taken to
be constant and the flux of momentum per unit depth of the jet across any plane normal

to the X - axis is a constant. Analytical formulations of these considerations yield

=0 and 2 / p . dy = const. = M (1.5)

0

d
d

a—

*i

One immediately notes that a = pM/;L2 is a reciprocal length, and the fundamental equa-

tions may then be put into dimensionless forms:

du Odv
—_—i—=0 (1.6)
dx dy
du du 9%
u— + Vv 1.7)

ox dy dy°
96 96 19%0 /o
and 0o—+ v— =— *(d—u—) (1.8)

The transformed boundary conditions are

3 ki
u(x,to) =0, v(x.0)=0,(—"—) =0, 0(m,y)=0and(——0—>
ay y=0 ay y=0

II. SOLUTION OF THE HYDRODYNAMIC PROBLEM

0 (1.9)

As previously remarked Schliching has shown that the introduction of a stream
function, ¥ = x 3 F(£), where & = y/x2/3, reduces the solution of Egs. (1.6) and (1.7)
to the integration of an ordinary differential equation, and Bickley has integrated the

resulting equation into the following closed forms:

u =632 [sech’ (BO] /x 1/3 (2.1)
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and v = 2B [2B¢ sech® (BE) - tanh (BE)]/x 2/3 (2.2)

The dimensionless streamlines, y(x,y) = const., are shown in Fig. 2(a) for the case in
which a~? is equal to the unit of length in terms of which the other physical quantities
are measured, i.e., it is the dimensionless momentum, pM/#z, per unit depth of the line

along which the unidimensional force is applied. Fig. 2(b) shows the dimensionless
velocity components for the same case; the u-profiles are also shown.
lI. SOLUTION OF THE THERMODYNAMIC PROBLEM

If Egs. (2.1) and (2.2) are inserted into Eq. (1.8), the energy equation becomes

68 2sechz(ﬁf) 90 2B[2B¢ sech2(,8§) —tanh (B&)] i?_
RV x 22 dy
(3.1)

18% 1448 sech’ (B¢) 1anh“(88)

<

o dy” X
Some algebraic manipulation shows that the similarity transformation, 0 = ﬁ4x"2/3(}(§),
reduces the partial differential equation (3.1) to the ordinary differential equation:
~2[tanh(BE)] G’ -4[sech®*(BE)IG = G /o + 144 sech? (BE) tanh® (BE) (3.2)
where the primes denote differentiation with respect to B8  The houndary condition due

to the symmetry of the thermal field about the axis of the jet becomes

G(0)=0 (3.3)

The form of Eq. (3.2) may be simplified further by putting 7 = tanh (B&); the simplified
equation is

(1-72%6""-2(0 -0) G’ +40 G =~ 144 6 p*(1=9?) (3.4)
where the primes now denote differentiation with respect to 7. Eq. (3.4) can be easily
transformed into the standard form for associated Legendre functions, and the general

solution for the homogeneous part is
G(n) = A(p*-1)"9"2 P~ 9(y) + B (n°-1) ~97%Q; % (») (3.5)

where v = [—1 + (46° + 200 + 1)*] /2 and where P#and Qﬁ are the associated Legendre

functions of order ;i and degree v of the first and second kinds respectively [5]. The

complete solution may be obtained in terms of quadratures by the method of variation of

parameters, and one notes that the Wronskian has a particularly simple form e/(n” -1) [6).
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Whenever the Prandil number is an integer or whenever v is an integer, the associated
Legendre functions become derivatives of Legendre functions or simple polynomials in
n [7). However, the specific properties and the numerical values of the associated Le-
gendre functions are generally unknown; consequently, it seems appropriate to give as
illustrative examples some solutions of Eq. (3.4) for particular o which can be obtained
by elementary methods.

The complete solution of Eq (3.4) may be written in the following form:

Gl =AG,(n) +BG () + G (n) (3.6)

where G,(7) and G,(n) are general solutions of the homogeneous equation and where G_(7)
is a particular integral. A particular integral in polynomial form may be found by the
method of undetermined constants; this integral is

G (N=q+r 7"+ sp? (3.7)
36 (30-2)

where q =

(30-5)(40-3)

-720(30-2)
r =

(30-5)(40~3)

and 360

S =

(80-5)
Obviously the Prandt! numbers, o0 = 3/4 and o = 5/3, are not included, and these values
require the more elaborate treatment which was previously outlined. If the parametric

dependence of the solution on the Prandtl number is indicated by G(7,0) and if it is

G(n,0) = Z G, 7" (3.8)
i

where the even powers of 7 are required by the symmetry of the thermal field, one can

assumed that

derive a recurrence relation between the coefficients by putting Eq. (3.8) into the homo-

geneous part of Eq. (3.4). This procedure yields

[(21+2) (21+1)] C = [21(21+ 1 —20)—-40] C21 (3.9)

214 2

If the series in Eq. (3.8) is to terminate, then 21(21 + 1-20) - 46 =0 or
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i(2i +1)

0= —
2(i + 1)

(3.10)

Unfortunately, the cases i = 1 and i = 2 are the exceptionally restricted ones, o = 3/4 and
o = 5/3, so that the first simply complete solution occurs for i =3 or 0 = 21/8. This case
will be treated as a particularly simple and illustrative example. The complete solution

for o = 21 /8 is
161
G(n,21/8) = A [l -(21/4) 7 +(105/16)n 4-( ”

> n6]+ [3780174—5922172 + 1128] /115
(3.11)

The constant A is determined by the strength of the heat source at the origin or, equiva-
lently, by assigning the value of the temperature at a point. Figs. 3,4 and 5 show the
thermal distributions for A = 0, 10, and 100 respectively. The case A = 0yields the
thermal field due to viscous dissipation alone. The case A = 10 is one in which the
effects of viscous dissipation and conveetive transfer are comparable. The case A = 100
is the usual case in which viscous dissipation may be neglected.

Of course, there are many other cases which have simple solutions in different
forms; an interesting example of these is the case 0 = 1/2. When o = 1/2, the differential

equation becomes

AI=-7)G" (=761 +26(n =0 (3.12)
which can be transformed to
G +2G (=0 (3.13)
by the substitution 7 = sin ¢ [8]. The pertinently complete solution is
G(m1/2) = A cos (21 %sin™ ') =36 (n* -9* + 1)/7 (3.14)
CONCLUSION
It is shown that the partial differential equation for the heat transfer in a plane
incompressible laminar jet can be reduced by a similarity transformation to an ordinary
differential equation that can be solved in terms of associated Legendre functions. The
particular instance when the Prandtl number of the fluid is in the form, o =[i(2i +1)}/
[2/i + 1)), is weated by elementary methods; the case, o = 1/2, is also treated by another
elementary method.
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Fig. 1, A Schematic Diagram of a Plane Laminar Jet.



Fig. 2(a),
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Dimensionless Streamlines for a Plane Incompressible Laminar Jet for a

Equal to the Unit Length.
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Fig. 2(b), Selected Dimensionless Velocity Components and Corresponding Horizontal

Dimensionless Velocity Profiles for a Plane Incompressible Laminar Jet for

a~? Equal to the Unit Length.
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Fig. 5, The Dimensionless Thermal Field Neglecting Viscous Dissip=tion in a Plane

Incompressible Laminar Jet for a~° Equal to the Unit Length. The Prandtl

number is 21/8.
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